6- अवधि चलती - औसत
मूविंग एवलल यह उदाहरण आपको सिखाता है कि Excel में समय श्रृंखला की चलती औसत की गणना कैसे करें। रुझानों को आसानी से पहचानने के लिए चलती औसत का उपयोग अनियमितताओं (चोटियों और घाटियों) को सुलझाने के लिए किया जाता है 1. सबसे पहले, हमारी समय श्रृंखला पर एक नज़र डालें। 2. डेटा टैब पर, डेटा विश्लेषण क्लिक करें। नोट: डेटा विश्लेषण बटन को ढूंढने में कठिनाई नहीं है, विश्लेषण टूलपैक ऐड-इन लोड करने के लिए यहां क्लिक करें। 3. मूविंग औसत चुनें और ठीक क्लिक करें। 4. इनपुट रेंज बॉक्स पर क्लिक करें और सीमा B2: M2 चुनें। 5. अंतराल बॉक्स में क्लिक करें और टाइप करें 6. 6. आउटपुट रेंज बॉक्स में क्लिक करें और सेल B3 चुनें। 8. इन मूल्यों का एक ग्राफ प्लॉट करें। स्पष्टीकरण: क्योंकि हम अंतराल को 6 निर्धारित करते हैं, चलती औसत पिछले 5 डेटा बिंदुओं की औसत और वर्तमान डेटा बिंदु है। नतीजतन, चोटियों और घाटियों को बाहर smoothed हैं। ग्राफ़ में बढ़ती प्रवृत्ति को दर्शाता है Excel पहले 5 डेटा बिंदुओं के लिए चलती औसत की गणना नहीं कर सकता क्योंकि इससे पहले के डेटा बिंदु पर्याप्त नहीं हैं 9. अंतराल 2 और अंतराल के लिए चरण 2 से 8 दोहराएं। निष्कर्ष: अंतराल जितना बड़ा होगा, उतनी ही अधिक चोटियों और घाटियों को सुखाया जाएगा। अंतराल जितना छोटा होता है, चलती औसत करीब वास्तविक आंकड़ों के अंक होते हैं। जब चलने की औसत चलती है, तो मध्य अवधि में औसतन अंक लग जाता है, पिछले उदाहरण में हमने पहली बार 3 समय की अवधि की गणना की और रखा यह 3 अवधि के बगल में है। हम तीन अवधि के अंतराल के मध्य में औसत रख सकते थे, जो कि 2 के बगल में है। यह अजीब समय अवधि के साथ अच्छी तरह से काम करता है, लेकिन समयावधि के लिए इतना अच्छा नहीं है। तो हम पहली चलती औसत स्थान कहां रखेंगे जब एम 4 तकनीकी तौर पर, मूविंग एवरेज टी 2.5, 3.5 पर गिर जाएगी। इस समस्या से बचने के लिए हम एम 2 का इस्तेमाल करते हुए एमएएस को चिकना करते हैं। इस प्रकार हम चिकनी मूल्यों को चिकना करते हैं यदि हम एक भी संख्या में औसत पदों को औसत करते हैं, तो हमें सुगम मूल्यों को सुचारू बनाने की आवश्यकता है निम्नलिखित तालिका एम 4.Moving औसत पूर्वानुमान का उपयोग करते हुए परिणाम दिखाती है। जैसा कि आप अनुमान लगा सकते हैं कि हम भविष्यवाणी के लिए सबसे अधिक प्राचीन तरीकों को देख रहे हैं। लेकिन उम्मीद है कि ये स्प्रेडशीट्स में पूर्वानुमानों को लागू करने से संबंधित कुछ कंप्यूटिंग मुद्दों पर कम से कम एक सार्थक परिचय हैं। इस शिरा में हम शुरुआत में शुरू करते हुए और मुव्हिंग औसत पूर्वानुमान के साथ काम करना शुरू करते रहेंगे। औसत पूर्वानुमान चल रहा है हर कोई औसत पूर्वानुमान के चलते से परिचित है, भले ही वे मानते हैं कि वे हैं। सभी कॉलेज के छात्रों ने उन्हें हर समय किया है एक ऐसे पाठ्यक्रम में अपने परीक्षण स्कोर के बारे में सोचें, जहां सेमेस्टर के दौरान चार परीक्षण होंगे। मान लीजिए कि आपको अपने पहले टेस्ट पर 85 मिले हैं। आप अपने दूसरे टेस्ट स्कोर के लिए क्या भविष्यवाणी करेंगे आप क्या सोचते हैं कि आपका शिक्षक आपके अगले टेस्ट स्कोर के लिए भविष्यवाणी करेगा आपको क्या लगता है कि आपके मित्र आपके अगले टेस्ट स्कोर के लिए अनुमान लगा सकते हैं आपको क्या लगता है कि आपके माता-पिता आपके अगले टेस्ट स्कोर के लिए भविष्यवाणी कर सकते हैं आप अपने दोस्तों और माता-पिता के लिए मारे गए सभी मरे हुए हैं, वे और आपके शिक्षक आपसे मिलने वाले 85 के क्षेत्र में कुछ पाने की उम्मीद कर रहे हैं। खैर, अब यह मान लेते हैं कि अपने दोस्तों को अपने स्वयं के प्रचार के बावजूद, आप अपने अनुमान का अनुमान लगाते हैं और आंकड़े आप दूसरी परीक्षा के लिए कम अध्ययन कर सकते हैं और आपको 73 मिलते हैं। अब सभी संबंधित और निराश होने वाले आशा करते हैं कि आप अपने तीसरे परीक्षण पर पहुंचेंगे, उनके अनुमान के विकास के लिए दो संभावित संभावनाएं हैं, भले ही वे इसे आपके साथ साझा करेंगे या नहीं। वे खुद से कह सकते हैं कि, यह आदमी हमेशा अपने स्मार्ट के बारे में धुआं उड़ रहा है वह एक और 73 हो सकता है अगर वह भाग्यशाली है। हो सकता है कि माता-पिता अधिक सहयोगी होने की कोशिश करें और कहते हैं, "अच्छा, अब तक आपने 85 और 73 मिल चुके हैं, इसलिए आप को (85 73) 2 9 79 के बारे में जानने के बारे में जानना चाहिए। मुझे नहीं पता, शायद अगर आपने कम पार्टीशन किया हो और सभी स्थानों पर तहखाने wagging और अगर आप एक बहुत अधिक पढ़ाई शुरू कर दिया है आप एक उच्च स्कोर मिल सकता है। इन दोनों अनुमानों वास्तव में औसत पूर्वानुमान हिल रहे हैं पहला, आपके भविष्य के प्रदर्शन की भविष्यवाणी करने के लिए केवल आपके नवीनतम स्कोर का उपयोग कर रहा है। इसे डेटा की एक अवधि का उपयोग करते हुए चलती औसत पूर्वानुमान कहा जाता है दूसरा भी चलती औसत पूर्वानुमान है लेकिन डेटा के दो अवधियों का उपयोग कर रहा है। मान लीजिए कि आपके महान दिमाग पर पर्दाफाश करने वाले ये सभी लोग आपको परेशान करते हैं और आप अपने स्वयं के कारणों के लिए तीसरी परीक्षा में अच्छी तरह से काम करने का निर्णय लेते हैं और अपने उद्धरण चिह्नों के सामने उच्च अंक डालते हैं। आप परीक्षा लेते हैं और आपका स्कोर वास्तव में एक 89 है, जो कि खुद सहित, प्रभावित है। तो अब आपके पास सेमेस्टर का अंतिम परीक्षण हो रहा है और हमेशा की तरह आपको लगता है कि आखिरी परीक्षा में आप कैसे करेंगे I अच्छी तरह से, उम्मीद है कि आप पैटर्न को देखते हैं अब, उम्मीद है कि आप पैटर्न देख सकते हैं। आप क्या मानते हैं कि हम काम करते समय सबसे सटीक सीटी है अब हम हमारी नई सफाई कंपनी पर लौट आये हैं जो आपकी बहिष्कृत आधे बहन ने शुरू की थी जब हम काम करते थे। आपके पास स्प्रेडशीट से निम्न अनुभाग द्वारा प्रस्तुत कुछ पिछला बिक्री डेटा है हम पहले औसत अवधि को चलती तीन अवधि के लिए डेटा प्रस्तुत करते हैं। सेल सी 6 के लिए प्रवेश होना चाहिए अब आप इस सेल सूत्र को अन्य कोशिकाओं C7 से C11 तक कॉपी कर सकते हैं। ध्यान दें कि हाल ही के ऐतिहासिक डेटा पर औसत चालें, लेकिन प्रत्येक पूर्वानुमान के लिए उपलब्ध तीन सबसे हाल की अवधि का उपयोग करता है। आपको यह भी ध्यान देना चाहिए कि हमारे सबसे हाल की भविष्यवाणी विकसित करने के लिए हमें पिछली अवधि के पूर्वानुमानों को वास्तव में बनाने की आवश्यकता नहीं है यह घातीय चिकनाई मॉडल से निश्चित रूप से अलग है Ive में उद्धरण की भविष्यवाणियों को शामिल किया गया है क्योंकि हम भविष्य की वैधता को मापने के लिए अगले वेब पेज में उनका उपयोग करेंगे। अब मैं औसत पूर्वानुमान की ओर बढ़ने वाली दो अवधि के अनुरूप परिणाम पेश करना चाहता हूं। सेल C5 के लिए प्रवेश होना चाहिए अब आप इस सेल सूत्र को सी 6 के माध्यम से अन्य कोशिकाओं C6 में कॉपी कर सकते हैं। ध्यान दें कि प्रत्येक भविष्यवाणी के लिए केवल ऐतिहासिक डेटा के केवल दो सबसे हाल के टुकड़े कैसे उपयोग किए जाते हैं। फिर मैंने उदाहरण के उद्देश्यों के लिए और पूर्वानुमान सत्यापन में बाद के उपयोग के लिए उद्धृत पूर्वोत्तरों को शामिल किया है। कुछ अन्य चीजें जो ध्यान देने योग्य हैं एक एम-अवधि चलती हुई औसत पूर्वानुमान के लिए केवल सबसे हाल के डेटा मान का इस्तेमाल पूर्वानुमान बनाने के लिए किया जाता है। और कुछ नहीं आवश्यक है मी-अवधि की औसत पूर्वानुमान चलती है जब उद्धरण पूर्वोत्तर सपोर्ट करता है, ध्यान दें कि पहली बार भविष्यवाणी की अवधि एम 1 में होती है। जब हम अपना कोड विकसित करते हैं तो इन दोनों मुद्दे बहुत महत्वपूर्ण होंगे। स्थानांतरण औसत फ़ंक्शन का विकास करना अब हमें चलती औसत पूर्वानुमान के लिए कोड विकसित करने की आवश्यकता है जो अधिक लचीले ढंग से इस्तेमाल किया जा सकता है। कोड निम्नानुसार है। ध्यान दें कि आदानों की अवधि के लिए आप पूर्वानुमान में उपयोग करना चाहते हैं और ऐतिहासिक मूल्यों की सरणी के लिए हैं। आप इसे जो कार्यपुस्तिका चाहते हैं, आप इसे स्टोर कर सकते हैं। फ़ंक्शन फॉरविविंग एवरेज (हिस्टोरिकल, नंबरऑफपेरियोड्स) सिंगल घोषित करने और चर को प्रारंभ करने के रूप में मंद आइटम पूर्णांक मंद काउंटर के रूप में पूर्णांक मंद संवेदी के रूप में पूर्णांक मंद संचय के रूप में एक मंद हिस्टोरिकल साइज के रूप में पूर्णांक चर को प्रारंभ करना काउंटर 1 संचय 0 ऐतिहासिक सरका के आकार का निर्धारण ऐतिहासिक ऐतिहासिक इतिहास। काउंटर 1 के लिए नंबर 1 सबसे हाल ही में देखे गए मूल्यों की उचित संख्या को संचित करना संचय संचय ऐतिहासिक (हिस्टोरिकल सिज़िज़ - नंबरऑफपेरियोड्स काउंटर) चल रहा हैअवाज संचय संख्याऑफ़पेरियोड कोड को कक्षा में समझाया जाएगा। आप स्प्रैडशीट पर फ़ंक्शन की स्थिति बनाना चाहते हैं ताकि कंप्यूटेशन का नतीजा तब दिखता है जहां निम्नलिखित को पसंद करना चाहिए। औसत औसत - एमए एक मूविंग औसत क्या है - एमए तकनीकी विश्लेषण में एक व्यापक रूप से इस्तेमाल किया सूचक जो फ़िल्टरिंग के द्वारा मूल्य को कम करने में मदद करता है यादृच्छिक मूल्य में उतार-चढ़ाव से शोर को बाहर निकालना एक चल औसत (एमए) एक प्रवृत्ति के बाद या पीछे सूचक है क्योंकि यह पिछले कीमतों पर आधारित है। दो बुनियादी और आम तौर पर इस्तेमाल किए जाने वाले एमए सरल चल औसत (एसएमए) हैं, जो एक परिभाषित संख्या की अवधि के दौरान एक सुरक्षा का सरल औसत और घातीय चलती औसत (एएमए) है, जो हाल के मूल्यों के लिए बड़ा वजन देता है। एमए के सबसे सामान्य अनुप्रयोग प्रवृत्ति दिशा की पहचान करने और समर्थन और प्रतिरोध स्तर निर्धारित करने के लिए हैं। जबकि एमए अपने दम पर पर्याप्त उपयोगी होते हैं, वे दूसरे संकेतकों के आधार भी बनाते हैं जैसे मूविंग औसत कनवर्जेन्स डिवर्जेंस (एमएसीडी)। खिलाड़ी लोड हो रहा है नीचे की ओर बढ़ते औसत - एमए एक एसएमए उदाहरण के रूप में, निम्न समापन कीमतों के साथ 15 दिनों के दौरान एक सुरक्षा पर विचार करें: सप्ताह 1 (5 दिन) 20, 22, 24, 25, 23 सप्ताह 2 (5 दिन) 26, 28, 26, 29, 27 सप्ताह 3 (5 दिन) 28, 30, 27, 29, 28 एक 10-दिन एमए पहले डेटा बिंदु के रूप में पहले 10 दिनों के लिए समापन कीमतों का औसत होगा। अगले डेटा बिंदु जल्द से जल्द कीमत को छोड़ देगा, 11 दिन की कीमत बढ़ाएं और औसत ले लें, और नीचे दिखाए गए अनुसार। जैसा कि पहले उल्लेख किया गया है, एमए की वर्तमान कीमत कार्रवाई की वजह से वे पिछले कीमतों पर आधारित हैं, एमए के लिए समय अवधि, अधिक से अधिक अंतराल इस प्रकार 200-दिवसीय एमए में 20-दिवसीय एमए की तुलना में काफी अधिक अंतर होगा क्योंकि इसमें पिछले 200 दिनों के लिए मूल्य शामिल हैं। एमए का उपयोग करने की लंबाई व्यापारिक उद्देश्यों पर निर्भर करती है, अल्प अवधि के व्यापार के लिए इस्तेमाल होने वाले कम एमए और लंबी अवधि के निवेशकों के लिए अधिक उपयुक्त एमए हैं। 200-दिवसीय एमए व्यापक रूप से निवेशकों और व्यापारियों द्वारा पीछा किया जाता है, इसके साथ-साथ इस चलती औसत से नीचे के ब्रेक और महत्वपूर्ण व्यापार संकेतों के रूप में माना जाता है। एमए भी अपने दम पर महत्वपूर्ण व्यापारिक संकेत देते हैं, या जब दो औसत पार हो जाते हैं एक बढ़ते हुए एमए इंगित करता है कि सुरक्षा एक अपट्रेंड में है। जबकि गिरावट एमए इंगित करता है कि यह एक डाउनट्रेंड में है। इसी तरह, ऊपर की गति को एक तेजी के क्रॉसओवर से पुष्ट किया जाता है। जो तब होता है जब एक अल्पावधि एमए एक लंबी अवधि के एमए ऊपर पार डाउनवर्ड गति को एक मंदी क्रॉसओवर से पुष्ट किया गया है, जो तब होता है जब एक अल्पावधि एमए लंबे समय तक एमए के नीचे पार करता है।
Comments
Post a Comment